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Specific methods have been developed for the design of PI

This paper presents performance limitations and a control desi n_trol_lers. Astrom et al17] describe_d a nl_JmericaI me_thod for
methodology for nonminimum phase plants of the pure delay t gsigning P1 controllers based on optimization of load disturbance

subject to robustness constraints. Of interest is the design of a S9ction with constraints on sensitivity and weighting of set point
of controllers, for which the open-loop transfer function is 46SPONse. They suggested, as did Horowitz and Skl the use

proportional-integral (PI) controller plus delay, meeting con-‘?f th_e maximum sensitivity as an important practical design speci-
straints on the magnitude of the closed-loop transfer function afigation- _ ) _

on the plant gain uncertainty. These two specifications are used tooidi [19] and Horowitz and Sid20] presented an optimal ro-
characterize the robustness, and are a recommended alternatRiést Synthesis technique to design a feedback controller for an
to the gain and phase margin constraints. A control design plot {certain NMP plant that can achieve specified closed-loop per-
presented which allows for selection of controller parameters iformance. Their synthesis technique provides the designer with
cluding those for the lowest sensitivity controller, and graphicall{Sight into the tradeoffs between closed-loop performance and
highlights gain and phase margin tradeoffs. The paper discus ndwidth, and also defines an implicit criterion for determining
limitations of performance of such systems in terms of crossoW¥pether a solution exists. Sifi21] developed a criterion to esti-
frequency and sensitivity. In addition, expressions and desigigte the maximum bandwidth of a sampled plant for given gain

plots are provided for a simplified approximate solution@Nd phase margin. He assumed an open-loop form of the ideal
[DOI: 10.1115/1.1849246 Bode characteristics and used asymptotic approximations. Horow-

itz and Liau[22] extended this technique to stable plants with
o . several RHP zeros. They showed how to achieve a large open-
'\K/ggﬂrdsh;;geﬁ;r;ftems, Nonminimum Phase, Delay, Gé}ﬁop gain in several frequency ranges, although there would aIT
' ways be some frequency ranges determined by the RHP zeros, in
which the open-loop gain would be less than 0 dB. This fact was
. proven by Francis and Zamg23] and by Freudenberg and Looze
1 Introduction [24] who showed that for NMP plants, a small sensitivity in one

For a nonminimum-phaséNMP) plant, such as a plant with frequency range forces a large sensitivity in the complementary
pure delay, classical proportional-integral derivatif®iD) con- ange. Freudenberg and Loo24,25 developed several con-
troller tuning methods—such as the Ziegler—Nichély and Straints on the closed-loop sensitivity of NMP and/or unstable
Cohen—Cooii2] methods—may not be appropriate for achieving'@nts in the form of weighted integrals of the sensitivity at all
the requisite performand@]. These methods become especialljeduencies or over a frequency range where the open-loop gain is
problematic when designing a controller for a plant with a dela?uch less than one. Middlet¢@6] used their results to provide a
that is large relative to its time constant. Despite problems, cldé@ndwidth limitation on NMP and/or unstable plants. Crossover
sical PI or PID control tuning methods are often used but “ddrequency limitations assuming a given slope of the open-loop
tuned” to maintain overall stability4]. amplitude around the crossover frequency were givel2T.

Many plants do not have fixed models and/or exhibit variable S€ron et al{28] addressed fundamental limitations in control
delay. A traditional PID controller may show performance degr&YStem design. As indicated in the Preface of their textbook, limi-
dation or may even become unstable as plant parameters chaff@ons in control are core issues of feedback theory and govern
Adaptive controllers are often implemented to accommodate the¥gat is achievable, and conversely what is not achievable, in feed-
changing situations. Methods include generalized predictive cd@Ck systems. The subject has a rich history, beginning with the
trol (GPO, relay feedback autotuning, internal model contropeminal work of Bod¢29]. Interpretations of Bode's results in the
(IMC), and the adaptive Smith predictor meth&g6]. context of control system design were provided by Horo\aa.

The design of classical controllers for delayed systems has been 1 Scope. This paper studies limitations of systems with
the subject of much interef7—9]. Khan and Lehmafil0] devel- 1 delay subjected to constraints on the upper bound of the

oped PI control algorithms for first-order plants with time de'*”%omplementary sensitivityi.e., magnitude of the closed-loop
They performed extensive simulations and data fittings to obtayynsrer functioh and the plant gain uncertainty. These two con-
PI tuning formulagfor ratios of time delay to time constant rang-giraints provide a broader measure of robustness than the gain
margin and phase margin. Explicit equations are provided that
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the open-loop transfer function is PI plus integrator plus delayhe transfer function of6) can be interpreted as the product of an
The results of the design technique are captured in a single piotegrator, a Pl controller with integral gaih and proportional
that provides the set of all controllers that satisfy the specificatiogain AB, and delaye™S'. At low frequencies the transfer function
on the sensitivity upper bound, gain margin, and phase margig proportional toA/s?, and thus the inverse of the integral gain
and graphically illustrates performance tradeoffs among them. is proportional to the sensitivity. The gaiB is proportional to

the sensor noise effect at the plant input.

The issue of properness 6{s) is not considered here. One can

2  Problem Statement always add poles far enough from the origin to engi(s) is a

proper controller. Furthermore, the high-frequency dynamics of

Robustness is represented via the complementary sensitiiys) can be replaced by a pure delay, as is often done in process
bound, M, and the gain uncertainty of the plant in an '”ter"a\J:ontroI, makingC(s) proper.

[1K], both of vyhich are a§sumed knqwn. These two parametersrpq design problem of interest is to find alB) pairs that
are embedded in the following inequality for the magnitude of th:?atisfy(l) and, in particular, to find the pair for whioh is maxi-

closed-loop transfer function, mum, corresponding to the controller with lowest sensitivity at
KL(s) low frequencies. The problem is solved exactly and, in addition,
m <M for s=jw, Yo=0, ke[1K], (1) simplified approximate solutions are derived. For the lattés)

is replaced by th& OH of A(1+ Bs)/s? with sampling timeT,
where the complementary sensitivity bouvd> 1, the gain uncer- =aT (with the chosen value af explained latex: It is shown that
tainty of the plantk is in the interval[ 1 K], and the open-loop the solution of the approximate problem matches closely the so-
transfer functionL(s), is lution of the exact problem.
- The motivation for using the open-loop transfer function of the
L(s)=C(s)P(s)e" ", @ form (6), or its ZOH with sampling timeT for the approximate

whereC(s) is the controller andP(s)e™*" is the plant, withP(s) ~case, is that it is a very reasonable model of open-loop low-
being minimum phase and stable. frequency behavior of many practical systems, including motor

Inequality (1) is a more encompassing measure of robustnesgeed controllers and phase-lock-loof3LLs). Although the
than the gain margin and phase margfi8]. It places a bound on method developed below is applicable to many real-world sys-
the sensitivity at all frequencies, not just at the two crossové#ms, the proposed controller structure is not recommended for
frequencies associated with the gain and phase margins. Ast@a particular types of systems:
example demonstrating the limitation of gain and phase marginsl

:(r)ar::gr fcuii]pcttl:cr)?] robustness, consider the following Open'looﬁequencies for which the open-loop amplitude is significantly
' above 0 dB be “notched” by FH(s) because this will decrease the
1.3%+211 100 disturbance rejection and increase the sensitivity.
L(s)=k S S(1+5/1000 e 0000%  ke[1,10 2. Itis not recommended that systems exhibiting notchlike be-
havior (antiresonangebe amplified by 1P(s). The reason is that
whose phase and gain margins are, respectively, 35 deg and 24a@Bantiresonance most likely is associated with resonance at a
for k=1. These values are the minimal margin values correspordifferent location of the plant, which if amplified byR(s) might
ing to M=1.66 andK=10 in (1). The M and K specifications dangerously excite the plant.
guarantee that the phase margin is at least 35° for any kaiim,
the interval[1,10]. However, from a frequency-domain analysis o8 Main Results
L(s), the phase margin fdt=10 is calculated to be 13° and the i i i
gain margin is 4 dB. Thus, the margin specifications fail to guar- 3-1 Exact Solution. To find (A,B) values representing the
antee the satisfaction of the phase margin for all plant gain uncép!utions of(1) whereL is given by(6), introduce the change of
tainties. In its place, the complementary sensitivity paramieter Variables,
and the gain uncertaint{ are recommended, as these parameters B
guarantee satisfaction of the phase margin for all possible gain a=AT?, b==, Q=oT, (@)
uncertainties. T

It can be shownj31] thatM andK are related to the gain and ang consider first the case of no gain uncertainty, Kes1. It

phase margins. For example, when &igw) = —mrad, then(1)  fo|lows from (1) that the &,b) pairs must satisfy the inequality,
requiregL(jw)|<(M—1)/M for K= 1, and thus the gain margin,

It is not recommended that systems with lightly damped

GM, for a givenK is at least M2Q4—2M2absin(Q)Q3+[a%b?(M?—1)—2aM? cogQ)]0?
M+1 +[a%(M2-1)]=0 (8)

GM=20log;o(K)+ 20 log, 3) ) ) . L
M for all normalized frequencieQ=0. For an @,b) pair which is

on the boundary region of the allowed, b) values ) exists such
that (8) is an equality. In addition, the derivative of the left-hand
side of (8) with respect t() at the same frequency is zero,

Similarly, when |L(jw)|=1, (1) requires ard(jw)>—m
+2 arcsifi(2M) 1], and thus the phase margin, PM, is at least

PM=2 arcsi,(%), 4 2M?[2—ab cog 0)]0%+2M?a(1-3b)sin( Q)0

_ ) ) —4M?acogQ)+2a%b?(M?—1)=0. 9)
2.1 Design Challenge. This paper considers the set of con- . . . .
trollers of the special form, Sub_tractlng fou_r times the equality @) from (9) yields the fol-
lowing expression fog, at that(},
C(s) All+Bs) (5) Q2MZ[(bQ2—-2)cog Q) —Q(b+1)sin(Q)]
s)= , - -

s?P(s) a=-— . (20)

(b2Q2+2)(M?-1)

Substituting(10) into the equality 0of8) gives a fourth-order equa-
A(1+Bs) tion for b as a function of(},

L(s)= —efsT_ 6
( ) SZ ( ) X4b4+X3b3+X2b2+le+X0:Oy (11)

corresponding to the open-loop transfer function,
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Fig. 1 Region of (a,b) values for M=1.46, equivalent to at
least 40 deg phase margin (PM) and at least 4.5 dB gain margin
(GM) for K=1 (both shaded regions ). Lower shaded region is

for M=1.46 with additional 6 dB plant gain uncertainty (K Fig. 2 Boundary curves of (a b) values that satisfy (1) with

K=1 for L of (6) and change of variables (7). Marked on the

=2). right of each curve is its M value and corresponding lower
bound of phase margin (PM) and gain margin (GM in dB) for
K=1, according to (3) and (4).

wheré

X4=Q1-M?2(Q%+1)cog(Q)]

X3=2M2Q3 cog Q)[(Q2+1)sin( Q)+ Q cog Q)] win_ [32] who state: “In general, the process noise spectrum is
typically concentrated at low frequencies, while the measurement
Xo=0[ —M?((4Q sin(Q)+3 cogQ))cog Q)+ Q%+ 1)+4] noise spectrum is typically more significant at high frequencies.”
) . Thus, it is possible to preserve low frequency sensitivity and dis-
X1 =2M2Q sin(Q)[Q sin(Q) +(Q?+4)cod Q)] turbance rejection properties while decreasing the sensor noise
Xo=4—M2(Q2+4)sir(Q). effect at the plant input _and output. In termsxzindb, this_ means
that the smallest possible for a fixed a is best, leading to a
To interpret the solution of11) consider the particular case ofchoice of @,b) on the boundarywhereb is minimal.
M =1.46, which is equivalent to a phase margin of at least 40 degThe controller design with lowest sensitivity at low frequencies,
and gain margin of at least 4.5 dB assuming no gain uncertainy., with maximuma, is directly available by inspection of Fig. 1.
(K=1). The solution corresponds to a two-dimensional region For M =1.46 andK =1, the values for a controller with lowest
the (a,b) plane, which can be calculated as follows: U$#) to  sensitivity are &,b)=(—20.3 dB,6.07). With an additional 6 dB
solve forb for a givenQ. Noting thatb (for that Q) has four of plant gain uncertainty, the values are a,lf)
solutions, select the positive real one for which the resulting opea-(—26.4 dB,6.34). The corresponding,B) values for general
loop system is stable. Then calculaérom (10). Searching over delay timeT can be calculated froma(b) using (7).
a range of frequencied enables the boundary of tha,p) region The solution for differentM values is depicted in Fig. 2. Each
that satisfieg8) to be identified, as depicted in Fig. 1. curve is the boundary of the allowed,p) values for a giverM.
Now assume the plant suffers from gain uncertainty, given byhe corresponding PM and Giflor K=1) values indicated are a
its upper boundK. Figure 1 can also be used to find theelf)  lower bound, that is,d,b) values on a curve guarantee at least the
region that satisfies M and K specificatiofttie toM) and plant PM and GM indicated. Assuming a plant gain uncertainty of
gain uncertaintydue toK). For example, to account for a gain[1 K], the question is how to find the range af,b) values that
uncertainty of 6 dB(that is,K=2), then for anyb, the alloweda  satisfies the margin conditions and gain uncertainty. The answer is
values should be 6 dB less in order to cope with the plant gajRe range between the lower bound of theh) region and its
uncertaintyke [1,2]. The (a,b) region will therefore be the lower ypper bound shifted down b (dB units. The maximuma and
shaded region shown in Fig. 1 where the upper curve is shifted associated can then be extracted from Fig. 2, as explained in

down by 6 dB.. _ ~ Fig. 1 for the case oM =1.46 andK=2.
The (a,b) pairs on the boundary are values for which there is at ) . . ) o
least at single frequencyl,, for which 3.2 Approximate Solution. It is possible to simplify the
_ equations for the exact solution by replacing the ddlay (6) by
Lon(eifo) Y (12) aZOH with sampling of duratiorTs. TheZOH of the open-loop
1+ Lyon(e1%) : transfer function(6) is then
The (a,b) pairs inside the allowed region satisfy AT3(z+1) ABT,
" Lzon(2)= > -1 (14)
Lzon(e'™) 2(z-1) z
a0l < M (13)
1+Lzon(e™) Using the change of variables,
for all ), meaning that it is possible to decredséor a fixed a. 5
The importance of this observation follows from Seron and Good- a=AT2, b=—, Q=oT,, Z=e? (15)

Ts

1The equations were derived using Matlab’s Symbolic Mathematics Toolbox from .
MathWorks, Inc., Natick, MA. (14) can be written
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a(z+1) ab

Lyow(2)= ———+ —. 16 ‘
ol D= 50 7 )

The allowed &,b) values are those for which the closed-loof -8r
system is stable and the margin specificafibnis satisfied. Asa  -12f "

first problem, consider the special case of no gain uncertain RTINS\
Substituting(16) into (1) with K=1 gives

a(z+1)+2ab(z-1) | o] M, PM, GM

<M, V|zZ]=1, (17) ~1.14, 52, 55

2(Z—1)%+a(Z+1)+2ab(Z—1))| ~Ji.18, 50, 53
which can be written using the bilinear transformatide- (1 };g 22: g:g
amisiyes RS i & 47
a(1+2b0?) +ja(2b—1)Q | ~J15% % 44

- =M, VQ=0. (18) 1.62, 36, 4.2
a+(2ab—4)Q2+ja(2b—1)Q| 17 48

36

1.93, 30,

1 23450678 9101112131415
b

Inequality (18) is satisfied, if and only if, for all)=0, -52
[ —4a%b?+M?(2ab—4)?]1Q0*+[M?(4a%b?—8a+a?) —a?

2127002 2\ 12
—4a’b7]0 +[a(M*—1)]=0. (19) Fig. 3 Boundary curves of (a,b) values that satisfy (1) with

The (a,b) pairs that solve inequalit{19) must be such that the K=1 where L is replaced by L(2) of (16). Marked on the right of
coefficient of Q4 is not negative, that is each curve is its M value and corresponding lower bound of

phase margin (PM) and gain margin (GM in dB) for K=1, ac-
—4a%b?+M?2(2ab—4)%=0, (20) cording to (3) and (4).

which is a quadratic inequality in terms ab with the solution of
eitherab<2M/(M+1) orab>2M/(M+1). SinceM > 1, satis- : _ 2 _ ; ;
faction of the second inequality also guarantabs-2 for which sponding toA=0.092; andB=4.1T in (14). Note that the gain

it can be shown thafL6) is closed-loop unstable. Thus, the secon@"d Phase margin conditions are equivalent to requiring that the
inequality is inadmissible, and it follows from the first inequalit)PIOt of the open-loop transfer function does not enter the shaded

that the condition for a non-negative coefficient®t is region encircling the poinf0 dB, —180 deg.
3.2.2 Explicit Expressions for Lowest Sensitivity Controller.

a< i (21) Itis possible to determine the parameters of the controller with the
b(M+1) lowest sensitivity at low frequencies. Sinceai$ proportional to
the sensitivity at low frequencies, the solution whose gajns

Two options exist for the coefficient @@ ; . ; . O
wo opti X 1cl maximum is desired. The maximum is dictated by(21) and

1. The coefficient of)? is positive. This corresponds to either condition(22) or (23). From(21) and(22), a is maximum
when
i (22) V2M-1
—=<a 2M M+ y2M -1
M?2—1)(1+4b? =" o Ner
( ) ) A= E T D and b SM=1) (24)

The coefficient of)? is negative. In this case, the two solutions
for Q2 in the quadratic equality19) must not be real, which gives

40
M?(2b—1)? M?
(4b%>—1)%a%+16 a+64 <0 (23)
1-M? (1-M?)?
SinceM > 1, the coefficient of2° is always positive.

Based on the above observations, the general solution of 201
equality (19) can be calculated, and is presented in Fig. 3, Whea
each curve is the boundary of the allowedlf) values for a given T 1g
M. The graph ordinate axis is normalized by the fadibf(M
+1) based on inequalit§21) to achieve a common top curve. As ;
before, the range ofa(b) values which satisfy the margin condi-
tions and gain uncertaintyl K] is the range between the lower
bound of the &,b) region and its upper bound shifted downiy  -10f--
(dB units.

321 Example. Consider a problem in which it is required —20f s .............. ............
thatM=1.46 andK=3.16 (10 dB), corresponding to at least 40 : : 1
deg phase margin and at least 14.5 dB gain margin. The cui _38
marked M=1.46 in Fig. 3 is selected which corresponds t —<70
PM=40 deg or greater and GW4.5 dB or greater foK=1. We
seek a value for which the two boundary valuesafliffer by 10 Fio. 4 Nichols plot for M=1.46 and K=3.16. corresponding to
dB (to achieve 14.5 dB total This happens @ =4.1 where the atgleast 40 deg Shase margin and at least 14.5 dB gairF\) margign
two a(M +1)/M values from the_ graph ar66_.3 and—16.3 dB (4.5 dB due to M and 10 dB due to plant gain uncertainty ).
(a=0.092 anda=0.29, respectively The Nichols plot forb  Frequencies are marked in rad /s for chosen T.=0.001s. The
=4.1 anda=0.092(where the lowesa is taken in order to handle open-loop transfer function must not enter the shaded region
the gain uncertainjyis shown in Fig. 4 forT;=0.001s, corre- in order to satisfy the gain and phase margin constraints.

30r
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PM= 541 492 452 418 389 364 342 323 305 290
T T T T T T T T T
: : T L : : ++++ 1
1.2+ ; 2 ‘+4++*+:"’+++:+‘ : 4
WH+++++*+++ I :
cross over (rad/sec) .
—a PM,GM
081 50,53
0.4f :
: : : i : . : : : : 30,36
0.2 e 54 1 i L L L ) I i L L L i L
2 3 4 5 6 7 g 9 10 11 12 13 14 15
0 1 1 l 1

1 11 12 13 14 15 16 17 18 1.9 2 Fig. 6 Boundary curves of (a,b) values showing comparison
M between exact and approximate solutions for M=1.93 (phase
margin, PM, of at least 30 deg ) and for M=1.18 (PM of at least
Fig.5 Maximum a, ab and crossover frequency (rad/s) versus 50 deg). Gain margin, GM, indicated in dB.
M and its associated guaranteed phase margin  (deg) (indicated
at top ) for the approximate solution.

same as the phase of ZOH equivalent form, respectively. It is,
therefore, expected that the two regions almost overlap. &H# (
For (21) and (23), the maximuma is derived as follows. Use the region for the exact problem can therefore be compared to the
equality of (23) as an extremum problem fex, i.e., calculate the region (aa?,b/a). Figure 6 is a comparison of the exact and
derivative ofa with respect td and then equate to zero for maxi-approximate 4,b) regions forM =1.66 (at least 30 deg phase
muma. The extremum pair ofg,b) then must be bounded by marging and M=1.18 (at least 50 deg phase margiThe ap-
proximate solution region is internal to the exact solution region,
(25) except for a very small region near maximanwhich decreases
with the phase margin and gain margin. However, when using this
. o added region for the exact case, the violation of the margin con-
Howeyer, the pair a,p) of (24) sat|s_f|es(25), and _he_nce the gitions is small. By conducting frequency domain simulations for
equality of (25 will dictate the maximuma. Substituting the \—g.0, 4.4, and 3.3corresponding to phase margins of at least
equality o_f(25) in the equality of(23) gives the following cubic 30 35 and 40 deg, respectivelyt can be shown that condition
equation in terms ob for maximuma, (1) is at most violated by less than 0.78, 0.44, and 0.23 dB, re-
8(M2-1)b3—4(3M2+1)b?+6M?b—M2=0.  (26) Spectively, and decreases further for larger phase margins.

Of the three solutions af26), the only admissible solution is the 3.4 Extension to Sensitivity Requirements. Replacing the
one which is positive and for which the closed-loop system EPmplementary sensitivityl) by the sensitivity margin require-
stable. Substituting this solution into the equality(®%) gives the ments,
maximum ofa. 1
Figure 5 depicts the maximumand itsab value versusM and -
the corresponding lower bound of the phase margin, according to 1+KL(s)
(4). The crossover freqlSJ)ency, which is als_o depicted in Fig. 5, §8can be shown that =L, satisfies(1) if and only if L=[(M?2
calculated fromLzop(€"™)|=1. The result is the following qua- _ 1)/m2]L, satisfies(28). This leads to the following corollary:

2

ab(2b+1)< Ve

<M, for s=jw, Yo>0, ke[1K], (28)

dratic equation in cds), Let (a,b) be a pair that solves the problem stated in Sec. 2. Then
—16cog(Q)+(2a2—8a2h2+32)cod )+ (2a2+8a2h2—16)  the pair,
-0, @7 MZ2a b)
which can be solved fof). M2—1"" )’

Fror_n Fig. 5, \_/vheri\/l dgcreases fronvl :Z'to M=1.3, corre- dsolves the same problem whe(f is replaced by(28).
sponding to an increase in the phase margin from at least 29 deg

to at least 45 deg, the crossover frequency decreases by a factof of conclusions

1.21,ab decreases by 1.14, and the sensitivity at low frequencies, . . o
1/a, increases by 2.6. Since, in general, the sensor noise is proJ "€ paper studies the design of nonminimum plants of the pure

portional toab [32], the noise will not increase much when thel€lay type that satisfy simultaneously robustness to gain uncer-
phase margin is decreased. However, the loop gain at low frequég{nty and an upper bound on tteomplementarysensitivity. The

cies which is proportional t@ changes significantly. Since the P8Per proposes a control structure yvhlch involves a PI controller
loop gain is responsible for disturbance rejection and sensitivitf} Series with the inverse of the minimum phase part of the plant.

the conclusion is that the dominant price of the phase marg%i#'ng this form, all stabilizing controllers, including the one with
increase is greater disturbance rejection and sensitivity. he smallest sensitivity, can be determined. In addition to explicit
expressions, a design plot is introduced which enables the selec-

3.3 Comparison of Exact and Approximate Solutions. A tion of the Pl controller which guarantees the gain and phase
reasonable approximation to the exaath() region can be calcu- margin specifications over the plant gain uncertainty. Moreover,
lated from the approximate equations whéig=aT and «=2. the plot can be used to identify the controller with lowest sensi-
The reason for using=2 is that the phase of 4/and 157 is the tivity, and to uncover tradeoff issues associated with gain margin,
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phase rnargihl sensitivity’ and high_frequency sensor noise at thi&l Lee, Y., Lee, J., and Park, S., 2000, “PID Controller Tuning for Integrating and
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