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This paper presents performance limitations and a control des
methodology for nonminimum phase plants of the pure delay
subject to robustness constraints. Of interest is the design of a
of controllers, for which the open-loop transfer function is
proportional-integral (PI) controller plus delay, meeting con
straints on the magnitude of the closed-loop transfer function
on the plant gain uncertainty. These two specifications are use
characterize the robustness, and are a recommended alterna
to the gain and phase margin constraints. A control design plo
presented which allows for selection of controller parameters
cluding those for the lowest sensitivity controller, and graphica
highlights gain and phase margin tradeoffs. The paper discus
limitations of performance of such systems in terms of crosso
frequency and sensitivity. In addition, expressions and des
plots are provided for a simplified approximate solutio
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1 Introduction
For a nonminimum-phase~NMP! plant, such as a plant with

pure delay, classical proportional-integral derivative~PID! con-
troller tuning methods—such as the Ziegler–Nichols@1# and
Cohen–Coon@2# methods—may not be appropriate for achievi
the requisite performance@3#. These methods become especia
problematic when designing a controller for a plant with a de
that is large relative to its time constant. Despite problems, c
sical PI or PID control tuning methods are often used but ‘‘d
tuned’’ to maintain overall stability@4#.

Many plants do not have fixed models and/or exhibit varia
delay. A traditional PID controller may show performance deg
dation or may even become unstable as plant parameters ch
Adaptive controllers are often implemented to accommodate th
changing situations. Methods include generalized predictive c
trol ~GPC!, relay feedback autotuning, internal model cont
~IMC!, and the adaptive Smith predictor method@5,6#.

The design of classical controllers for delayed systems has b
the subject of much interest@7–9#. Khan and Lehman@10# devel-
oped PI control algorithms for first-order plants with time dela
They performed extensive simulations and data fittings to ob
PI tuning formulas~for ratios of time delay to time constant rang
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ing from 0.2 to 20!. Alexander and Tahan@11# compared a tuning
method proposed by Abbas@12# to an adaptive Smith predicto
control strategy for control of systems with time delay.

Lee et al.@13# presented a method for PID controller tunin
based on process models for integrating and unstable proce
with time delay. They provided explicit PID controller tunin
rules for unstable plants with one right-half-plane~RHP! pole,
delayed unstable plants with two RHP poles, and integrat
plants with time delay. Mann et al.@14# conducted a time-domain
PID analysis that included three types of first-order plus time
lay models~zero or negligible, low to medium long, and very lon
time delays!.

Methods for tuning PID controllers based on gain and ph
margin specifications have been reported. Ho et al.@15# developed
simple analytical formulas to design PI and PID controllers
commonly used first- and second-order plus dead time plant m
els to meet gain and phase margin specifications. Ho et al.@16#
presented tuning formulas for the design of PID controllers t
satisfy both robustness and performance requirements.

Specific methods have been developed for the design o
controllers. Astrom et al.@17# described a numerical method fo
designing PI controllers based on optimization of load disturba
rejection with constraints on sensitivity and weighting of set po
response. They suggested, as did Horowitz and Sidi@18#, the use
of the maximum sensitivity as an important practical design sp
fication.

Sidi @19# and Horowitz and Sidi@20# presented an optimal ro
bust synthesis technique to design a feedback controller fo
uncertain NMP plant that can achieve specified closed-loop
formance. Their synthesis technique provides the designer
insight into the tradeoffs between closed-loop performance
bandwidth, and also defines an implicit criterion for determini
whether a solution exists. Sidi@21# developed a criterion to esti
mate the maximum bandwidth of a sampled plant for given g
and phase margin. He assumed an open-loop form of the i
Bode characteristics and used asymptotic approximations. Hor
itz and Liau @22# extended this technique to stable plants w
several RHP zeros. They showed how to achieve a large o
loop gain in several frequency ranges, although there would
ways be some frequency ranges determined by the RHP zero
which the open-loop gain would be less than 0 dB. This fact w
proven by Francis and Zames@23# and by Freudenberg and Looz
@24# who showed that for NMP plants, a small sensitivity in o
frequency range forces a large sensitivity in the complemen
range. Freudenberg and Looze@24,25# developed several con
straints on the closed-loop sensitivity of NMP and/or unsta
plants in the form of weighted integrals of the sensitivity at
frequencies or over a frequency range where the open-loop ga
much less than one. Middleton@26# used their results to provide
bandwidth limitation on NMP and/or unstable plants. Crosso
frequency limitations assuming a given slope of the open-lo
amplitude around the crossover frequency were given in@27#.

Seron et al.@28# addressed fundamental limitations in contr
system design. As indicated in the Preface of their textbook, li
tations in control are core issues of feedback theory and gov
what is achievable, and conversely what is not achievable, in fe
back systems. The subject has a rich history, beginning with
seminal work of Bode@29#. Interpretations of Bode’s results in th
context of control system design were provided by Horowitz@30#.

1.1 Scope. This paper studies limitations of systems wi
pure delay subjected to constraints on the upper bound of
complementary sensitivity~i.e., magnitude of the closed-loo
transfer function! and the plant gain uncertainty. These two co
straints provide a broader measure of robustness than the
margin and phase margin. Explicit equations are provided
highlight the tradeoff among the open-loop crossover frequen
sensitivity, and high-frequency gain. The paper also include
design technique that provides parameters for a specific contr
for a large class of practical systems. The structure considered

cted
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the open-loop transfer function is PI plus integrator plus de
The results of the design technique are captured in a single
that provides the set of all controllers that satisfy the specificati
on the sensitivity upper bound, gain margin, and phase mar
and graphically illustrates performance tradeoffs among them

2 Problem Statement
Robustness is represented via the complementary sensi

bound, M, and the gain uncertainty of the plant in an interv
@1,K#, both of which are assumed known. These two parame
are embedded in the following inequality for the magnitude of
closed-loop transfer function,

U kL~s!

11kL~s!
U<M for s5 j v, ;v>0, kP@1,K#, (1)

where the complementary sensitivity boundM.1, the gain uncer-
tainty of the plantk is in the interval@1,K#, and the open-loop
transfer function,L(s), is

L~s!5C~s!P~s!e2sT, (2)

whereC(s) is the controller andP(s)e2sT is the plant, withP(s)
being minimum phase and stable.

Inequality ~1! is a more encompassing measure of robustn
than the gain margin and phase margin@18#. It places a bound on
the sensitivity at all frequencies, not just at the two crosso
frequencies associated with the gain and phase margins. A
example demonstrating the limitation of gain and phase mar
to fully capture robustness, consider the following open-lo
transfer function,

L~s!5k
1.39s1211

s

100

s~11s/1000!
e20.0004s, kP@1,10#

whose phase and gain margins are, respectively, 35 deg and 2
for k51. These values are the minimal margin values correspo
ing to M51.66 andK510 in ~1!. The M and K specifications
guarantee that the phase margin is at least 35° for any gain,k, in
the interval@1,10#. However, from a frequency-domain analysis
L(s), the phase margin fork510 is calculated to be 13° and th
gain margin is 4 dB. Thus, the margin specifications fail to gu
antee the satisfaction of the phase margin for all plant gain un
tainties. In its place, the complementary sensitivity parameteM
and the gain uncertaintyK are recommended, as these parame
guarantee satisfaction of the phase margin for all possible
uncertainties.

It can be shown@31# that M andK are related to the gain an
phase margins. For example, when argL( j v)52p rad, then~1!
requiresuL( j v)u<(M21)/M for K51, and thus the gain margin
GM, for a givenK is at least

GM520 log10~K !120 log10S M11

M D . (3)

Similarly, when uL( j v)u51, ~1! requires argL(jv).2p
12 arcsin@(2M)21#, and thus the phase margin, PM, is at least

PM52 arcsinS 1

2M D . (4)

2.1 Design Challenge. This paper considers the set of co
trollers of the special form,

C~s!5
A~11Bs!

s2P~s!
, (5)

corresponding to the open-loop transfer function,

L~s!5
A~11Bs!

s2
e2sT. (6)
900 Õ Vol. 126, DECEMBER 2004
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The transfer function of~6! can be interpreted as the product of a
integrator, a PI controller with integral gainA and proportional
gainAB, and delaye2sT. At low frequencies the transfer functio
is proportional toA/s2, and thus the inverse of the integral gainA
is proportional to the sensitivity. The gainAB is proportional to
the sensor noise effect at the plant input.

The issue of properness ofC(s) is not considered here. One ca
always add poles far enough from the origin to ensureC(s) is a
proper controller. Furthermore, the high-frequency dynamics
P(s) can be replaced by a pure delay, as is often done in pro
control, makingC(s) proper.

The design problem of interest is to find all (A,B) pairs that
satisfy~1! and, in particular, to find the pair for whichA is maxi-
mum, corresponding to the controller with lowest sensitivity
low frequencies. The problem is solved exactly and, in additi
simplified approximate solutions are derived. For the latter,L(s)
is replaced by theZOH of A(11Bs)/s2 with sampling timeTs
5aT ~with the chosen value ofa explained later!. It is shown that
the solution of the approximate problem matches closely the
lution of the exact problem.

The motivation for using the open-loop transfer function of t
form ~6!, or its ZOH with sampling timeTs for the approximate
case, is that it is a very reasonable model of open-loop lo
frequency behavior of many practical systems, including mo
speed controllers and phase-lock-loops~PLLs!. Although the
method developed below is applicable to many real-world s
tems, the proposed controller structure is not recommended
two particular types of systems:

1. It is not recommended that systems with lightly damp
frequencies for which the open-loop amplitude is significan
above 0 dB be ‘‘notched’’ by 1/P(s) because this will decrease th
disturbance rejection and increase the sensitivity.

2. It is not recommended that systems exhibiting notchlike
havior ~antiresonance! be amplified by 1/P(s). The reason is that
an antiresonance most likely is associated with resonance
different location of the plant, which if amplified by 1/P(s) might
dangerously excite the plant.

3 Main Results

3.1 Exact Solution. To find (A,B) values representing the
solutions of~1! whereL is given by~6!, introduce the change o
variables,

a5AT2, b5
B

T
, V5vT, (7)

and consider first the case of no gain uncertainty, i.e.,K51. It
follows from ~1! that the (a,b) pairs must satisfy the inequality,

M2V422M2ab sin~V!V31@a2b2~M221!22aM2 cos~V!#V2

1@a2~M221!#>0 (8)

for all normalized frequenciesV>0. For an (a,b) pair which is
on the boundary region of the allowed (a,b) values,V exists such
that ~8! is an equality. In addition, the derivative of the left-han
side of ~8! with respect toV at the same frequency is zero,

2M2@22ab cos~V!#V212M2a~123b!sin~V!V

24M2a cos~V!12a2b2~M221!50. (9)

Subtracting four times the equality of~8! from ~9! yields the fol-
lowing expression fora, at thatV,

a52
V2M2@~bV222!cos~V!2V~b11!sin~V!#

~b2V212!~M221!
. (10)

Substituting~10! into the equality of~8! gives a fourth-order equa
tion for b as a function ofV,

x4b41x3b31x2b21x1b1x050, (11)
Transactions of the ASME
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x45V4@12M2~V211!cos2~V!#

x352M2V3 cos~V!@~V211!sin~V!1V cos~V!#

x25V2@2M2~~4V sin~V!13 cos~V!!cos~V!1V211!14#

x152M2V sin~V!@V sin~V!1~V214!cos~V!#

x0542M2~V214!sin2~V!.

To interpret the solution of~11! consider the particular case o
M51.46, which is equivalent to a phase margin of at least 40
and gain margin of at least 4.5 dB assuming no gain uncerta
(K51). The solution corresponds to a two-dimensional region
the (a,b) plane, which can be calculated as follows: use~11! to
solve for b for a given V. Noting thatb ~for that V! has four
solutions, select the positive real one for which the resulting op
loop system is stable. Then calculatea from ~10!. Searching over
a range of frequenciesV enables the boundary of the (a,b) region
that satisfies~8! to be identified, as depicted in Fig. 1.

Now assume the plant suffers from gain uncertainty, given
its upper boundK. Figure 1 can also be used to find the (a,b)
region that satisfies M and K specifications~due toM! and plant
gain uncertainty~due toK!. For example, to account for a gai
uncertainty of 6 dB~that is,K52), then for anyb, the alloweda
values should be 6 dB less in order to cope with the plant g
uncertaintykP@1,2#. The (a,b) region will therefore be the lower
shaded region shown in Fig. 1 where the upper curve is shi
down by 6 dB.

The (a,b) pairs on the boundary are values for which there is
least at single frequency,V0 , for which

U LZOH~ej V0!

11LZOH~ej V0!
U5M . (12)

The (a,b) pairs inside the allowed region satisfy

U LZOH~ej V!

11LZOH~ej V!
U,M (13)

for all V, meaning that it is possible to decreaseb for a fixeda.
The importance of this observation follows from Seron and Go

1The equations were derived using Matlab’s Symbolic Mathematics Toolbox fr
MathWorks, Inc., Natick, MA.

Fig. 1 Region of „a,b … values for MÄ1.46, equivalent to at
least 40 deg phase margin „PM… and at least 4.5 dB gain margin
„GM… for KÄ1 „both shaded regions …. Lower shaded region is
for MÄ1.46 with additional 6 dB plant gain uncertainty „K
Ä2….
Journal of Dynamic Systems, Measurement, and Control
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win @32# who state: ‘‘In general, the process noise spectrum
typically concentrated at low frequencies, while the measurem
noise spectrum is typically more significant at high frequencie
Thus, it is possible to preserve low frequency sensitivity and d
turbance rejection properties while decreasing the sensor n
effect at the plant input and output. In terms ofa andb, this means
that the smallest possibleb for a fixed a is best, leading to a
choice of (a,b) on the boundary~whereb is minimal!.

The controller design with lowest sensitivity at low frequencie
i.e., with maximuma, is directly available by inspection of Fig. 1
For M51.46 andK51, the values for a controller with lowes
sensitivity are (a,b)5(220.3 dB,6.07). With an additional 6 dB
of plant gain uncertainty, the values are (a,b)
5(226.4 dB,6.34). The corresponding (A,B) values for general
delay timeT can be calculated from (a,b) using ~7!.

The solution for differentM values is depicted in Fig. 2. Eac
curve is the boundary of the allowed (a,b) values for a givenM.
The corresponding PM and GM~for K51) values indicated are a
lower bound, that is, (a,b) values on a curve guarantee at least t
PM and GM indicated. Assuming a plant gain uncertainty
@1,K#, the question is how to find the range of (a,b) values that
satisfies the margin conditions and gain uncertainty. The answ
the range between the lower bound of the (a,b) region and its
upper bound shifted down byK ~dB units!. The maximuma and
its associatedb can then be extracted from Fig. 2, as explained
Fig. 1 for the case ofM51.46 andK52.

3.2 Approximate Solution. It is possible to simplify the
equations for the exact solution by replacing the delayT in ~6! by
a ZOH with sampling of durationTs . TheZOH of the open-loop
transfer function~6! is then

LZOH~z!5
ATs

2~z11!

2~z21!2
1

ABTs

z21
. (14)

Using the change of variables,

a5ATs
2, b5

B

Ts
, V5vTs , Z5ej V, (15)

~14! can be written
om

Fig. 2 Boundary curves of „a,b … values that satisfy „1… with
KÄ1 for L of „6… and change of variables „7…. Marked on the
right of each curve is its M value and corresponding lower
bound of phase margin „PM… and gain margin „GM in dB … for
KÄ1, according to „3… and „4….
DECEMBER 2004, Vol. 126 Õ 901
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LZOH~Z!5
a~Z11!

2~Z21!2
1

ab

Z21
. (16)

The allowed (a,b) values are those for which the closed-loo
system is stable and the margin specification~1! is satisfied. As a
first problem, consider the special case of no gain uncerta
Substituting~16! into ~1! with K51 gives

U a~Z11!12ab~Z21!

2~Z21!21a~Z11!12ab~Z21!
U<M , ;uZu51, (17)

which can be written using the bilinear transformationZ5(1
1 j V)/(12 j V) as

U a~112bV2!1 ja~2b21!V

a1~2ab24!V21 ja~2b21!V
U<M , ;V>0. (18)

Inequality ~18! is satisfied, if and only if, for allV>0,

@24a2b21M2~2ab24!2#V41@M2~4a2b228a1a2!2a2

24a2b2#V21@a2~M221!#>0. (19)

The (a,b) pairs that solve inequality~19! must be such that the
coefficient ofV4 is not negative, that is,

24a2b21M2~2ab24!2>0, (20)

which is a quadratic inequality in terms ofab with the solution of
eitherab,2M /(M11) or ab.2M /(M11). SinceM.1, satis-
faction of the second inequality also guaranteesab.2 for which
it can be shown that~16! is closed-loop unstable. Thus, the seco
inequality is inadmissible, and it follows from the first inequali
that the condition for a non-negative coefficient ofV4 is

a<
2M

b~M11!
. (21)

Two options exist for the coefficient ofV2:

1. The coefficient ofV2 is positive. This corresponds to

8M2

~M221!~114b2!
<a (22)

The coefficient ofV2 is negative. In this case, the two solution
for V2 in the quadratic equality~19! must not be real, which gives

~4b221!2a2116
M2~2b21!2

12M2
a164

M2

~12M2!2
<0 (23)

SinceM.1, the coefficient ofV0 is always positive.
Based on the above observations, the general solution o

equality ~19! can be calculated, and is presented in Fig. 3, wh
each curve is the boundary of the allowed (a,b) values for a given
M. The graph ordinate axis is normalized by the factorM /(M
11) based on inequality~21! to achieve a common top curve. A
before, the range of (a,b) values which satisfy the margin cond
tions and gain uncertainty@1,K# is the range between the lowe
bound of the (a,b) region and its upper bound shifted down byK
~dB units!.

3.2.1 Example. Consider a problem in which it is require
that M51.46 andK53.16 ~10 dB!, corresponding to at least 4
deg phase margin and at least 14.5 dB gain margin. The c
marked M51.46 in Fig. 3 is selected which corresponds
PM540 deg or greater and GM54.5 dB or greater forK51. We
seek ab value for which the two boundary values ofa differ by 10
dB ~to achieve 14.5 dB total!. This happens atb54.1 where the
two a(M11)/M values from the graph are26.3 and216.3 dB
(a50.092 anda50.29, respectively!. The Nichols plot forb
54.1 anda50.092~where the lowesta is taken in order to handle
the gain uncertainty! is shown in Fig. 4 forTs50.001 s, corre-
902 Õ Vol. 126, DECEMBER 2004
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sponding toA50.092/Ts
2 andB54.1Ts in ~14!. Note that the gain

and phase margin conditions are equivalent to requiring that
plot of the open-loop transfer function does not enter the sha
region encircling the point~0 dB, 2180 deg!.

3.2.2 Explicit Expressions for Lowest Sensitivity Controlle
It is possible to determine the parameters of the controller with
lowest sensitivity at low frequencies. Since 1/a is proportional to
the sensitivity at low frequencies, the solution whose gain,a, is
maximum is desired. The maximuma is dictated by~21! and
either condition~22! or ~23!. From ~21! and ~22!, a is maximum
when

a5
2M

b~M11!
and b5

M1A2M21

2~M21!
. (24)

Fig. 3 Boundary curves of „a,b … values that satisfy „1… with
KÄ1 where L is replaced by L „Z… of „16…. Marked on the right of
each curve is its M value and corresponding lower bound of
phase margin „PM… and gain margin „GM in dB … for KÄ1, ac-
cording to „3… and „4….

Fig. 4 Nichols plot for MÄ1.46 and KÄ3.16, corresponding to
at least 40 deg phase margin and at least 14.5 dB gain margin
„4.5 dB due to M and 10 dB due to plant gain uncertainty ….
Frequencies are marked in rad Õs for chosen TsÄ0.001 s. The
open-loop transfer function must not enter the shaded region
in order to satisfy the gain and phase margin constraints.
Transactions of the ASME



i

t

u
e

,

the
d

e

on,

this
on-
for
st

re-

-

hen

ure
cer-

ller
nt.

th
licit
lec-

ase
er,
si-
gin,
For ~21! and ~23!, the maximuma is derived as follows. Use the
equality of ~23! as an extremum problem fora, i.e., calculate the
derivative ofa with respect tob and then equate to zero for max
mum a. The extremum pair of (a,b) then must be bounded by

ab~2b11!<
4M2

M221
. (25)

However, the pair (a,b) of ~24! satisfies~25!, and hence the
equality of ~25! will dictate the maximuma. Substituting the
equality of ~25! in the equality of~23! gives the following cubic
equation in terms ofb for maximuma,

8~M221!b324~3M211!b216M2b2M250. (26)

Of the three solutions of~26!, the only admissible solution is the
one which is positive and for which the closed-loop system
stable. Substituting this solution into the equality of~25! gives the
maximum ofa.

Figure 5 depicts the maximuma and itsab value versusM and
the corresponding lower bound of the phase margin, accordin
~4!. The crossover frequency, which is also depicted in Fig. 5
calculated fromuLZOH(ej V)u51. The result is the following qua-
dratic equation in cos~V!,

216 cos2~V!1~2a228a2b2132!cos~V!1~2a218a2b2216!

50, (27)

which can be solved forV.
From Fig. 5, whenM decreases fromM52 to M51.3, corre-

sponding to an increase in the phase margin from at least 29
to at least 45 deg, the crossover frequency decreases by a fac
1.21,ab decreases by 1.14, and the sensitivity at low frequenc
1/a, increases by 2.6. Since, in general, the sensor noise is
portional toab @32#, the noise will not increase much when th
phase margin is decreased. However, the loop gain at low freq
cies which is proportional toa changes significantly. Since th
loop gain is responsible for disturbance rejection and sensitiv
the conclusion is that the dominant price of the phase mar
increase is greater disturbance rejection and sensitivity.

3.3 Comparison of Exact and Approximate Solutions. A
reasonable approximation to the exact (a,b) region can be calcu-
lated from the approximate equations whereTs5aT and a52.
The reason for usinga52 is that the phase of 1/s and 1/s2 is the

Fig. 5 Maximum a, ab and crossover frequency „rad Õs… versus
M and its associated guaranteed phase margin „deg … „indicated
at top … for the approximate solution.
Journal of Dynamic Systems, Measurement, and Control
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same as the phase of itsZOH equivalent form, respectively. It is
therefore, expected that the two regions almost overlap. The (a,b)
region for the exact problem can therefore be compared to
region (aa2,b/a). Figure 6 is a comparison of the exact an
approximate (a,b) regions forM51.66 ~at least 30 deg phas
margins! and M51.18 ~at least 50 deg phase margin!. The ap-
proximate solution region is internal to the exact solution regi
except for a very small region near maximuma, which decreases
with the phase margin and gain margin. However, when using
added region for the exact case, the violation of the margin c
ditions is small. By conducting frequency domain simulations
M56.0, 4.4, and 3.3~corresponding to phase margins of at lea
30, 35, and 40 deg, respectively!, it can be shown that condition
~1! is at most violated by less than 0.78, 0.44, and 0.23 dB,
spectively, and decreases further for larger phase margins.

3.4 Extension to Sensitivity Requirements. Replacing the
complementary sensitivity~1! by the sensitivity margin require
ments,

U 1

11kL~s!
U<M , for s5 j v, ;v.0, kP@1,K#, (28)

it can be shown thatL5L0 satisfies~1! if and only if L5@(M2

21)/M2#L0 satisfies~28!. This leads to the following corollary:
Let (a,b) be a pair that solves the problem stated in Sec. 2. T
the pair,

S M2a

M221
,bD ,

solves the same problem where~1! is replaced by~28!.

4 Conclusions
The paper studies the design of nonminimum plants of the p

delay type that satisfy simultaneously robustness to gain un
tainty and an upper bound on the~complementary! sensitivity. The
paper proposes a control structure which involves a PI contro
in series with the inverse of the minimum phase part of the pla
Using this form, all stabilizing controllers, including the one wi
the smallest sensitivity, can be determined. In addition to exp
expressions, a design plot is introduced which enables the se
tion of the PI controller which guarantees the gain and ph
margin specifications over the plant gain uncertainty. Moreov
the plot can be used to identify the controller with lowest sen
tivity, and to uncover tradeoff issues associated with gain mar

Fig. 6 Boundary curves of „a,b … values showing comparison
between exact and approximate solutions for MÄ1.93 „phase
margin, PM, of at least 30 deg … and for MÄ1.18 „PM of at least
50 deg …. Gain margin, GM, indicated in dB.
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phase margin, sensitivity, and high-frequency sensor noise a
plant input. Expressions and design plots are provided for both
exact solution and a simplified approximate solution.
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